nav_xian
返回返回 教育头条

考研数学答题建议汇总

学习经验 考研

2020年02月20日 11:55:14
2020考研于今开始(12月21日-23日)考研初试面对的是一张试卷,考试时间是180分钟,那么在这3个小时的时间里面各个科目该如何安排时间呢小编为各位考生整理了“2020考研数学一答题怎么准备?”的内容,希望对各位考生有所帮助。
2020考研数学考试时间:12月22日上午 8:30-11:30,考研数学一考试时间一共180分钟,总分150分。 考研数学一考试时间安排:
选择题和填空题约1小时。考研数学选择题(共32分),应该在30-40分钟答完,每个题目4-5分钟就要做完。考研数学填空题(共24分),应该在25-30分钟内答完,每个题目依然是4-5分钟就要做完。目标120 也是同上。 考研数学解答题(共94分,5个10分题,4个11分题)应该在110-120分钟内完成,平均每个题目11-13分钟答完。根据以往经验,目标120 的应该在100分钟内完成,每个题目应该在10分钟内完成,要求还是挺高的。某个题目如果计算超过了15分钟,要警惕,超过20分钟,果断先放一放,平复一下心情,先做其他题目。
做题时一定要仔细,该拿分的一定要拿住。尤其是选择题和填空题,因为体现的只是之后结果,一个小小的错误都会令一切努力功亏一篑。很多同学认为选择和填空的分值不大,把主要的精力都放在了大题上面,但是需要引起大家注意的是:两道选择或填空题的分值就相当于一道大题,如果这类题目失分过多,仅靠大题是很难把分数提很高的。做完一道选择、填空题时只需要大家再仔细的验算一遍即可,并不需要一定要等到做完考卷以后再检查,而且这样也不会花费大家很长时间。做大题的时候,对于前面说的完全没有思路的题不要一点不写,写一些相关的内容得一点“步骤分”。
考研数学一答题技巧:
一:分步得分法 考研数学试卷中的解答题是按步骤给分的。在考研试卷中,80%的题目是考查基础的,所以大部分考生的情况是,题目有思路会做,但是由于当中计算失误,导致之后的答案是错的。或是会做,但是缺少必要关键的步骤,也不能拿满分,这就是我们平时遇见的“会而不对,对而不全”的老大难问题。纠正这一错误的做法是:要求考生在平时做题时,认真书写解题过程,注意表达要准确、逻辑要紧密、书写要规范,防止被扣分。
二:跳步得分法 解题时有思路,但是发现做在一半卡壳了。一般是有两种情况,一是某个知识点或性质忘记了,对于这种情况静下心来捋一下这块的内容,看看会用到哪个知识点。由于考试时间的,点我免费领取考研英语阅卷人原创高分作文模板,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。
三:缺步得分法 若是遇到一个很困难的问题,实在是不能完全做出来。一个聪明的解题策略是,将它们分解成一个个的小问题,先解决问题的一部分,能解决多少就解决多少,能写多少就写多少,尽量不要空白。尤其是一些解题思路比较固定的题目,若是重要的步骤写出来后,虽然结论没有得出,但是分数却可以拿到一半以上,这确实是一个不错的主意。
证明题答题技巧:
一步:首先要记住零点存在定理,介值定理,中值定理、极限存在的两个准则等基本原理,包括条件及结论,中值定理好能记住他们的推到过程,有时可以借助几何意义去记忆。
因为知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如2006年数学一考研试题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明一步,即使求出了极限值也是不能得分的。
因为数学推理是环环相扣的,如果一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,"单调性"与"有界性"都是很好验证的。再比如2009年直接让考生证明拉格朗日中值定理;但是像这样直接可以利用基本原理的证明题在考研试题中并不是很多见,更多的是要用到第二步。
第二步:可以试着借助几何意义寻求证明思路,以构造出所需要的辅助函数。 一个证明题,大多时候是能用其几何意义来正确解释的,当然为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取大值的点(正确审题:两个函数取得大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。

再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。
第三步:从要证的结论出发,去寻求我们所需要的构造辅助函数,我们称之为"逆推"。 如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。
在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。

好了,就说这么多,希望对大家有用。我是你的学习顾问王敏,选课有问题,快来找行家,我会为你匹配最适的课程,欢迎大家关注我微信(18560125702),学姐近10年教培行业工作经验,从现在开始我就是你的私人顾问,为您的课程进行一个详细系统的讲解哦。返回教育宝头条

【免责声明】本文仅代表作者本人观点,与教育宝无关。教育宝对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何保证。请读者仅作参考,特此声明!

相关推荐

400-029-0997