2020
考研的时间越来越近了,有的考生心急如焚,一方面是自己各方面的知识点还没有完全掌握,另一方面是各科的提分能力还没有锻炼好,今天小编给大家整理了考场上的临场技巧,希望能够帮助大家。
在考研数学中,有关中值定理的证明题型是一个重要考点,也是一个让很多同学感到比较困惑的考点,不少同学在读完题目后不知从何下手,不会分析证明,找不到思路,之所以会出现这样的情况,主要是因为这些同学对中值定理证明题型的特点缺乏清晰的认识,对其分析和证明方法没有完全理解和掌握。这类题的特点和证明方法主要包括以下几点:
一、中值定理证明题的特点
1.中值定理证明题常常需要作辅助函数;
2.中值定理证明题经常在一个题中需要结合运用三个知识点,分别是:连续函数在闭区间上的性质(包括大值和小值定理、零点定理和介质定理),微分中值定理和积分中值定理;
3.中值定理证明题可能需要在一个问题的证明中反复运用同一个微分中值定理两次甚至三次,比如罗尔中值定理或拉格朗日中值定理;
4.从历年考研数学真题变化规律来看,证明中用得多的主要是罗尔中值定理和拉格朗日中值定理,而泰勒中值定理和柯西中值定理则用得很少。
二、中值定理证明题的常用方法
中值定理证明题有不同的类型,对不同的类型需要运用不同的方法,主要的和常用的方法包括以下几种:
1.如果题目条件中出现关于函数值的等式,而函数是连续的,则可能需要运用连续函数在闭区间上的性质进行证明;对导数是连续的情况也可以对导函数运用连续函数的性质;
2.如果题目条件中出现关于定积分的等式,则可能需要运用积分中值定理;
3.对于以下这类问题一般使用罗尔中值定理进行证明:
6、如果是要证明两函数差值比的中值等式,或证明两函数导数比的中值等式,则可能需要利用柯西中值定理进行证明。