今天小编给大家带来了关于
考研数学的相关知识点的分享,希望对大家的学习有所帮助,预祝大家考试顺利!
1.函数在一点处极限存在,连续,可导,可微之间关系。对于一元函数函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点不一定无极限。若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续,可导与可微等价。而对于二元函数,只能又可微推连续和可导(偏导都存在),其余都不成立。
2.基本初等函数与初等函数的连续性:基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。
3.极值点,拐点。驻点与极值点的关系:在一元函数中,驻点可能是极值点,也可能不是极值点,而函数的极值点必是函数的驻点或导数不存在的点。注意极值点和拐点的定义一充、二充、和必要条件。
4.夹逼定理和用定积分定义求极限。这两种方法都可以用来求和式极限,注意方法的选择。还有夹逼定理的应用,特别是无穷小量与有界量之积仍是无穷小量。
5.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。
线性代数
1、行列式的计算。行列式直接考察的概率不高,但行列式是线代的工具,判定系数矩阵为方阵的线性方程组解的情况及特征值的计算都会用到行列式的计算,故要引起。
2、矩阵的变换。矩阵是线代的研究对象,线性方程组、特征值与特征向量、相似对角化,二次型,其实都是在研究矩阵。一定要注意在化阶梯型时只能对矩阵做行变换,不可做列变换变换。
概率论与数理统计
1、非等可能 与 等可能。若一次随机实验中可能出现的结果有N个,且所有结果出现的可能性都相等,则每一个基本事件的概率都是1/N;若其中某个事件A包含的结果有M个,则事件A的概率为M/N。
2、互斥与对立 对立一定互斥,但互斥不一定对立。若A,B互斥,则P(A B)=P(A) P(B),若A,B对立,则满足(1)A∩B=空集;(2)P(A B)=1。
3、互斥与独立。若A,B互斥,则P(A B)=P(A) P(B),若A,B独立,则P(AB)=P(A)P(B);概率为0或者1的事件与任何事件都独立
4、排列与组合。排列与顺序有关,组合与顺序无关,同类相乘有序,不同类相乘无序。