nav_xian
返回返回 教育头条

考研管理类联考初等数学备考 考研初试

学习经验 考研

2019年05月29日 14:24:03
2020年的考研复习逐渐拉开大幕,为了实现理想,大家应该及时做好复习规划。小编整理“2020考研管理类联考初等数学备考:数形结合问题揭秘(上)”内容,从而为大家复 习着重提供参考。
一、联考展望
1.用数形结合的思想解题可分两类:
(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;
(2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等。
2. 热点内容:
在联考数学中,“数”的常见表现形式为:实数、代数式、函数和不等式等,而“形”的常见表现形式为:直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等。在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容。

二、方法点拨
数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面。利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法。
数形结合解题基本思路:“数”和“形”是数学中两个基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述。数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题。实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观。 特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到充分体现。

考研管理类联考初等数学备考 考研初试,如果你喜欢这篇文章,请将其保留版权转载。我的微信号(18560125702)欢迎来咨询,10年教培行业工作经验,如果你在考研方面有疑问,请与我联系,我将为您提供全面专业的选课帮助。返回教育宝头条

【免责声明】本文仅代表作者本人观点,与教育宝无关。教育宝对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何保证。请读者仅作参考,特此声明!

相关推荐

400-029-0997